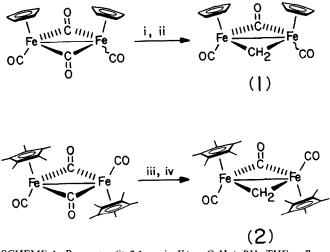
$(\eta^5-C_5R_5)_2Fe_2(CO)_2(\mu-CO)(\mu-CH_2)$ (R = H, CH₃): A CONVENIENT ONE-POT SYNTHESIS USING CHLOROMETHYL PIVALATE

MICHAEL E. WRIGHT and GREGORY O. NELSON *

Department of Chemistry, University of Arizona, Tucson, AZ 85721 (U.S.A.) (Received September 16th, 1983)

Summary


The compounds $(\eta^5 - C_5 R_5)_2 Fe_2(CO)_2(\mu - CO)(\mu - CH_2)$ (R = H, CH₃) have been prepared through the reaction of chloromethyl pivalate with the appropriate metal anions, $\eta^5 - C_5 H_5 Fe(CO)_2 K$ and $\eta^5 - C_5 Me_5 Fe(CO)_2 K$.

In recent years, the synthesis and chemistry of binuclear transition metal compounds containing a μ -CH₂ ligand have attracted considerable attention from organometallic chemists [1]. Several reagents have been utilized for the introduction of the μ -CH₂ group such as CH₂I₂ [2], CH₂N₂ [3], CH₂(OTs)₂ [4], and CH₂PPh₃ [5]. In addition, the iron complex Fp(η^1 -CH₂O₂CCH₃) (Fp = η^5 -C₅H₅Fe(CO)₂) has been used by Casey [6] to prepare (η^5 -C₅H₅)₂Fe₂(CO)₂(μ -CO)(μ -CH₂) (1) in 20% yield. We wish to report a new and convenient method for the synthesis of 1 using chloromethyl pivalate and FpK. This methodology has also been employed to prepare the new analog (η^5 -C₅Me₅)₂Fe₂(CO)₂(μ -CO)(μ -CH₂) (2).

The FpK was generated from the reaction of Fp₂ with 2.1 equiv of K(sec- C_4H_9)₃BH in refluxing tetrahydrofuran (THF) for 1 h [7]. One equiv of chloromethyl pivalate, ClCH₂O₂CC(CH₃)₃, was slowly added to the mixture which was then refluxed for an additional 2 h. The crude reaction product was found to contain a mixture of 1 and Fp₂ in a molar ratio of 3/1, respectively (55% crude yield of 1). Complex 1 was separated from the Fp₂ using the method previously reported [6] which afforded 1 (*cis/trans*, 3.5/1) in 35% isolated yield based upon the starting compound, Fp₂.

The Fp'K ($Fp' = \eta^5 - C_5 Me_5 Fe(CO)_2$) was prepared in the following manner [8]. A THF solution that contained Fp'_2 and 3.5 equiv of Na/K alloy (22/78%) [9] was heated at reflux for 1 h. Chloromethyl pivalate (0.30 g, 2.0 mmol) was added to the FpK solution after removal of excess Na/K alloy, and the mixture was refluxed for 2 h. Chromatography of the crude product under nitrogen on a column of

^{*} Presently located at Research Laboratories, Tennessee Eastman Co., Kingsport, TN 37662 (U.S.A.).

SCHEME 1. Reagents: (i) 2.1 equiv K(sec- C_4H_9)₃BH, THF, reflux, 1 h: (ii) 1.0 equiv chloromethyl pivalate, reflux, 2 h; (iii) 3.5 equiv Na/K alloy (22/78%), THF, reflux, 1 h: (iv) 1.0 equiv chloromethyl pivalate, reflux, 2 h.

alumina(III) with hot hexanes afforded analytically pure 2 as air-stable purple crystals in 15% isolated yield. The single resonance at δ 8.57 for the μ -CH₂ protons indicates that 2 exists completely as the *trans*-isomer *. The single terminal carbonyl IR band at 1909 cm⁻¹ is consistent with only the *trans*-isomer which possesses C_{2h} symmetry (ignoring rotational orientation about the C₅Me₅ C₅ axes) [10]. The observation of the carbonyl IR bands of 2 at lower wavenumbers is undoubtly due to the additional electron donation through the C₅Me₅ ligands.

From this work we have provided experimental proof that chloromethyl pivalate is a readily available source of a methylene unit for the bimetallic systems 1 and 2. In addition, we feel this reagent may be one of choice because of its commercial availability and the property of undergoing substitution reactions versus electron transfer.

Experimental

General

All manipulations of solvents and compounds were carried out under a purified nitrogen atmosphere using standard Schlenk techniques. The following instrumentation was utilized: ¹H NMR (250 MHz) and ¹³C NMR (62.9 MHz), Bruker WM 250 FT; IR, Perkin-Elmer 983. Carbon-13 chemical shifts were referenced to the CDCl₃ resonance at δ 77.00 ppm and ¹H NMR chemical shifts were relative to Me₄Si. The K(sec-C₄H₉)₃BH (purchased as K-selectride), Na/K alloy (22/78%), and chloromethyl pivalate were purchased from Aldrich Chemical Company and used as received. The Fp₂ was obtained from Strem Chemical Company and was used without purification. The [η^5 -C₅Me₅Fe(CO)₂]₂ was prepared by a literature method [11].

^{*} The NMR spectrum of the crude reaction mixture also exhibited only a single μ -CH₂ resonance at δ 8.57 ppm.

Preparation of 1

A THF (50 ml) solution containing Fp_2 (1.00 g, 2.8 mmol) and K-selectride (0.5 *M* in THF, 12.0 ml, 6.0 mmol) was refluxed for 1 h. Chloromethyl pivalate (0.42 g, 2.8 mmol) was added to the mixture via syringe and the mixture was then refluxed for 2 h. The solution was cooled to 25°C, filtered, and the solvent volume reduced to ~ 10 ml under vacuum. This mixture was treated with pentane (50 ml) and set aside at -25°C overnight. The solid was collected by filtration, washed with cold pentane (2 × 25 ml), and finally dried in vacuo to afford a mixture of 1 and Fp_2 (3/1, respectively) as seen by ¹H NMR. Separation of 1 from Fp_2 utilized column chromatography eluting with hot hexanes as discussed previously by Casey and co-workers [6]. This gave pure 1 (0.32 g, 35%) by ¹H NMR as mixture of *cis* and *trans* isomers (3.5/1, respectively).

Preparation of 2

In a glove box, a flask was charged with THF (50 ml), Na/K alloy (0.34 g, 7.0 mmol), and Fp₂' (1.00 g, 2.0 mmol). The mixture was taken out of the glove box and heated at reflux for 1 h. The mixture was cooled to 25°C and filtered through Celite to remove the excess Na/K alloy. Chloromethyl pivalate (0.30 g, 2.0 mmol) was added to the filtrate and the mixture heated at reflux for an additional 2 h. The solution was then allowed to cool to 25°C, filtered, and the solvent removed in vacuo. Column chromatography (2 × 30 cm) of the residue on alumina III eluting with hot hexanes gave purple and red bands, in that order. The solvent was removed from the purple band to afford analytically pure 2 (0.15 g, 15%): ¹H NMR (CDCl₃) δ 8.57 (s, 2, CH₂), 1.68 (s,15,CH₃); ¹³C NMR (CDCl₃) δ 280.63 (μ -CO), 216.12 (C=O), 159.26 (μ -CH₂), 97.15 (C_5 Me₅), 9.24 (CH₃); IR (cm⁻¹ in CH₂Cl₂) ν (CO) 1909 and 1758. Anal. Found: C, 59.97; H, 6.77. C₂₄H₃₂Fe₂O₃ calcd.: C, 60.03; H, 6.72%.

Acknowledgment

G.O.N. gratefully acknowledges support of this work through a grant from the National Science Foundation (CHE-8102918).

References

- 1 For a leading reference and excellent review of the literature see: W.A. Herrmann, Adv. Organomet. Chem., 20 (1982) 160.
- 2 C.E. Sumner, Jr., P.E. Riley, R.E. Davis and R. Petit, J. Am. Chem. Soc., 102 (1979) 1752; C.E. Sumner, Jr., J.A. Colier and R. Petit, Organometallics, 1 (1982) 1350.
- 3 W.A. Herrmann and Ch. Bauer, J. Organomet. Chem., 204 (1981) C21.
- 4 K.M. Motyl, J.R. Norton, C.K. Schauer and O.P. Anderson, J. Am. Chem. Soc., 104 (1982) 7325.
- 5 R. Kirswagen, R. Alt, S. Dieter and M.L. Ziegler, Angew. Chem., 93 (1981), 1073.
- 6 C.P. Casey, P.J. Fagen and W.H. Miles, J. Am. Chem. Soc., 104 (1982) 1134.
- 7 J.A. Gladysz, G.M. Williams, W. Tam and D.K. Johnson, J. Organomet. Chem., 140 (1977) C1.
- 8 The preparation of Fp'K has been reported previously using a K-mirror: D. Catheline and D. Astruc, J. Organomet. Chem., 226 (1982) C52.
- 9 J.E. Ellis, R.W. Fennell and E.A. Flom, Inorg. Chem., 15 (1976), 2031.
- 10 F.A. Cotton, Chemical Applications of Group Theory, Wiley, New York, 2nd Ed. Chapter 10.
- 11 R.B. King and M.B. Bisnette, J. Organomet. Chem., 8 (1967) 287.